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Resonances and localization of classical waves in random systems with correlated disorder
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An original approach to the description of classical wave localization in weakly scattering random media is
developed. The approach accounts explicitly for the correlation properties of the disorder, and is based on the
idea of spectral filtering. According to this idea, the Fourier sgaocever spectrumof the scattering potential
is divided into two different domains. The first one is related toglbal (Bragg) resonancesnd consists of
spectral components lying within a limiting sphere of the Ewald construction. These resonances, arising in the
momentum space as a result of a self-averaging, determine the dynamic behavior of the wave in a typical
realization. The second domain, consisting of the components lying outside the limiting sphere, is responsible
for the effect oflocal (stochastic) resonancesserved in the configuration space. Combining a perturbative
path-integral technique with the idea of spectral filtering allows one to eliminate the contribution of local
resonances, and to distinguish between posstiehasticand dynamicallocalization of waves in a given
system with arbitrary correlated disorder. In the one-dimensi@ial case, the result, obtained for the local-
ization length by using such an indirect procedure, coincides exactly with that predicted by a rigorous theory.
In higher dimensions, the results, being in agreement with general conclusions of the scaling theory of local-
ization, add important details to the common picture. In particular, the effect of the high-frequency localization
length saturation is predicted for 2D systems. Some possible links with the problem of wave transport in
periodic or near-periodic systenighotonic crystalsare also discussefiS1063-651X99)08010-1

PACS numbe(s): 42.70.Qs, 41.20.Jb

I. INTRODUCTION of extending states in the regime of strong localization influ-

o . o _ ences, in a most radical manner, the transport properties of
~ The localization of waves in random media is a topic of e gysten{10], which is used in practice to search for the
increasing current interest, owing to its fundamental role ingcajization. The strongexponential typelocalization was
wave-matter interactions, and also by the significance of posshserved experimentally in 1D and 2D random systems with
sible applications. Localization appears in systems governedassical wavegl1,12, but in 3D no experimental confirma-
by time-reversible wave equations, and contradicts the usuaion of strong localization in structureless media yet exists
intuition-grounded ideas that form the basis of radiativebeyond doubt(see, however, Refd.13] and [14], where
transfer theory. The concept of localization, originally devel-some signatures of possible localization in three dimensions
oped for electrons in disordered soliff§], was transferred have been reportgd

later to classical waves, in particular, to electromagnetics and D€SPite a huge number of related investigations, there is
no unified theory that is able to describe consistently all the

acousticqfor a review see Ref$2—4]). The enhanced back- : o "
scattering of waves, which is sometimes referred to as Wef_etalls of the wave localization beyond the existing ge_ne_ral
N ' ~“picture, and, therefore, a quantitative analytical description
localization and can serve as a precursor of strong localizgst the phenomenon still presents a challenge. The most im-
tion, was observed experimentally in the mid 1980s by sevportant question here concerns the relation between the lo-
eral groupg5]. Being anticipated in some earlier works as acalization and its characteristics, say, localization length, on
correction to the conclusions of radiative transfer thd@ly  the one hand, and the correlation properties of the potential,
the effect has been analyzed recently in a great number afn the other. At the same time, most of the existing ap-
papers as a counterpart of its electronic analog, with a riclproaches, with only few exceptions, treat the problem phe-
collection of the results that now constitute a well-developechomenologically, for instance, describing the potential as a
theory. é-correlated field, which obviously puts such formulations
In the case of strong localization, our understanding of theentirely outside the realm of the question.
phenomenon has, as a matter of fact, a qualitative character The study of wave localization is most advanced in one-
only. It is well known that the randomness of the potentialdimensional systems, for which it has been possible not only
leads to the appearance of localized states in disordered syt®- prove the existence of localization, but also to estimate the
tems (see, e.g., Ref[7]). The localization manifests itself localization lengti8]. It can be shown, in particular, that the
most strongly in the one-dimensiondlD) case where even localization length is determined by those frequencies in the
an arbitrary weak disorder causes exponential localization gbower spectrum of the potential that are known as Bragg
all states of the systef@]. In two-dimensiona(2D) systems, resonances, and which we will also cglbbal resonances
according to the scaling theory of localizatip®), all states hereafter. In the lowest order, with respect to the strength of
are also localized, whereas in three dimensi@ the situ-  disorder, the localization length is described by the frequen-
ation seems to be much more complicated and depends eses of the main Bragg resonance in an effective periodic
sentially on the relative strength of the disorder. The absenciattice, when the wavelength is twice the lattice constant.
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In multidimensional systems, relations between the localeonjecture, the procedure can be reduced to a filtering in the
ization and the correlation properties of the disorder have notourier space.
been understood completely. However, in recent years it has According to this idea, which represents a central point of
been conjectured that the localization of classical waves ighe present work, the algorithm that is utilized here is re-
not simply the result of a higher degree of disorder, for in-duced to the two-step procedure as follows. First, to analyze
stance, due to Mie resonances of independent uncorrelaté@e behavior of the system for an ensemble of all possible
scatterers(a microscopic point of view), but rather the realizations, we use.the perturbative path-integral approach
byproduct of an interplay between order and disorder. Thigleveloped recently in Ref$21] and[22]. Then, to study
idea, formulated by JohfL5], underlines the importance of dynamical localization, we perform a filtering of the result

structure to set up the localization in random media. More{Nus obtained for the mean intensity, in the Fourier space,

over, strong localization in 3D seems to be observed unti|<eeping _the_ contribution of_global resonances onIy._Though
now only in periodic or near-periodic composite materials such an indirect and rather involved procedure, making some

which were proposed by Yablonovitdhé] and are usually fine distinctions between self-averaging and ensemble aver-

. 7. aging, or, respectively, dynamical and stochastic behaviors,
referred to as photonic crystals, although they are not limite S used, the final results are very simple. The wave transport

to the optical, put, rather, are possible for other ranges of thﬂwrough the system is described by a functional of the power
electromagnetic spectrum, or for waves of other natureéSgnecirym of the scattering potential, i.e., the correlation prop-
such as acousticelastio waves[17-19. Starting from the  gies of the medium are accounted for in an explicit form.
above idea, in the present paper we go further in é€-  The functional may be easily evaluated for any given power
roscopicmode of thinking, suggesting that the localization in spectrum, and, what is more, its form allows one to explain
multidimensional systems is determined by the power speche localization as a complex interaction of different global
trum of the potential taken somehow at the same frequenciagsonances, i.e., in terms of some regularity hidden in any
of global resonances, in close analogy with what has beerealization of the random system. The sign of this functional
shown in one dimension. can serve as a test for the localization to be possible, and the
Unlike the 1D case, to which the concept of self- absolute value is related to the localization length, when the
averaging can be directly applied, in multidimensional medidocalization is achieved. This functional depends crucially on
we are usually confined to estimating the mean value of e dimensionality of the problem. In the 1D case the result
fluctuating quantity, i.e., by averaging over the ensemble ofoincides exactly with that obtained previously by making
all possible realizations of the potential. The difference beuse of an independent rigorous procedure based on the con-
tween self-averaging and ensemble averaging is of great infept of self-averaging, that may be appraised as an indirect
portance for the localization phenomenon. To understan§onfirmation of the validity of the proposed approach. In all
this, let us consider the problem of wave transmissiomlgher_dlmen5|onallt|e_s Fhe results, being generally consis-
through a slab of a randomly inhomogeneous medium. Evelpnt with known predictions of other theories, offer addi-

in the 1D case, where any degree of disorder leads to |ocap_onal important details to the general picture. In particular,

ization, and, hence, the transmission is exponentially smaﬂqe effect of the high-frequency localization length saturation

for almost all realizations, inside the medium, along with the's predicted for 2D systems. Some possible links with the

general decrease and natural oscillations, there are enhan épblem of wave transport in per_lod|c or near-periodic sys-
ms(photonic crystalsare also discussed.

ments of the wave intensity observed at some random poin : .
y P The outline of the paper is as follows. In Sec. Il we con-

[20]. These spikes, which we will cdlbcal resonancebere- ider the diff bet i q bl .
after, can exceed any given level and, obviously, are inherentU€" e difierences between sefl- and ensemble averaging,
o ; exemplified by a 1D problem of wave transmission through a
to multidimensional systems as well. lab of disordered medi Next. in Sec. III introd th
As a result, when one performs, as usual, ensemble aver-a0 Of disordered medium. INext, in Sec. 1l we introduce the
notions of global and local resonances, and discuss their in-

aging for the wave intensity, which is not a self-averaging.. " | 1 ) ts of the localizati h
guantity, one cannot say anything definite about the behavigiMate relevance to various aspects of the localization phe-

of the wave in a typical realization. The reason for this sity-omenon. In Sec. IV we give a brief description of the math-

ation is that the intensity may be exponentially large due toemaUcaI procedgre a'med at the asymptotlc cglculatlon of
he mean intensity radiated by a point source in a random

local resonances and, in spite of the rarity of these event§, : . . ;
they give an essential contribution to the mean value. Theremed!um' The Tesu'ts’ which characterize stochastlc and dy-
fore, we have to distinguish between the notiomphamical namical behaviors of the wave, are formulated in Secs. V and

localization describing the transport properties of the me-VI’ respectively. The final section contains a summary and

dium in typical realizations and determined by global reso->0M€ concluding remarks.

nances only, on the one hand, and thasufchastic local-
ization, i.e., localization of the average wave intensity, !l- SELF-AVERAGING VS ENSEMBLE AVERAGING

related to the properties of the whole statistical ensemble of T analyze the behavior of classical waves in random

realizations, and determined by all components of the SPeGsystems we use the simplest model, based on the reduced
trum, on the other. Consequently, to study a possible dypeimnholiz equation

namical localization in the system, we must extract somehow

the hidden global resonances or eliminate the contribution of V2U(R)+ Kk [1+%(R)JU(R)=0, 2.9
local ones. This is not so simple to do as to say, but it can be

facilitated in the lowest-order approximation, when the mix-wherek=2/\ is the wave number associated with a homo-
ing of different spectral components is absent, and, as wgeneous medium, arigl(R) is the permittivity distribution
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(scattering potential The statistical properties of the system the decrement four times less, up to logarithmic accufaty
are described by a set of correlation functions of the scatterFhe reason for this discrepancy is very simple: the represen-
ing potential, which is supposed to be a random function otative realizations for the mean transmittivity are small prob-
coordinates, with zero mean value. In particular, we will useable transparent realizations with~1. Although the mean
the correlator transmittivity also decreases exponentially witheading to
a stochastic localizationi.e., the localization that reflects the
B.(R)=(2(R")E(R"+R)), (2.2 pehavior of an ensemble of all possible realizations when a
) ) ) positively defined quantity(transmittivity, wave intensity,
that, being Fourier-transformed, determines the power spegsic) is implied, it shows mainly an exponentially small mea-
trum @, (K) of the scattering potential, sure of representative realizations. In spite of the obvious
fact that the localization in a stochastic sense is less mean-
q;g(K):(zW)—mf d™Rexp —iK-R)B,(R). (2.3  ingful as compared to its dynamical partner, the evidence of
stochastic localization allows one to draw two conclusions,
We assume that the system is statistically uniform on avergt _Ieast. First, the existence_ of stochast!c localization is s_uf-
age, with correlations decreasing at infinity. This means i f|C|<_ant for the fact of _dynam|cal localization to be proved in
’ ' given system. In this case, the decrement of the exponential

;ﬁt:g:;tln I;healpefl?g:n??éjﬁvraghre?gf)?é?l?s c(>)fntgeuratnodc;m decay of a mean value, obtained in an ensemble of all pos-
£(R) P ty P sible realizations, may serve as an estimate of the lower

spatial Shiﬁm' The Iaﬁer property results in thg existe_nce of oundary for the inverse localization length. Second, the ex-
self-averaging quantities that may_pe associated W'th. SUCtence of dynamical localization, while being necessary, at
rand(t)rtn \s/ylsttranrgsizgorfttuese qtuarlrr:tgles rt:e? ivir?ﬁevwifh "fhe same time is not sufficient for the stochastic localization
spect to volumesize of the system become&wnen the vo to be observed. One can imagine, in principle, that the exis-

ume tends to_|nf|n|tythe average with respect to reahzaﬂonstence of local resonances in a dynamically localizing system
of the potential. The behavior of the mean value of a non,

self-averaging quantity is completely different. To under-Ieads o the situation where the de_cay of the mean vglue
) : . 2 ' becomes, for instance, of a polynomial type, or the function

stand ttus I.et l,J’S mention thqt in a finite system the measurg . ceases to decrease at all.

of the “typical” realizations is close to unity but does not

reach unity. In the general case, only these typical realiza-

tions contribute to the mean value of a non-self-averaging Ill. RESONANCES

guantity and its qualitative behavior reflects, more or less,

the behavior of the same quantity in a typical realization.len

However, the averaging could sometimes drastically changg

the character of the quantity. This happens usually when thg |

nontypical, low probability realizations give an essential

contribution to the mean value; this fact explains naming

these realizations as representative ones. o

The difference between self- and non-self-averaging £ HK) = = k2D (2K). (3.2

guantities manifests itself in the clearest manner in the wave 2

localization phenomenon. To illustrate this let us consider

the 1D problem of a plane wave transmission through a slaffhe nature of this approximation is worthy of special discus-

of disordered medium with thickness The wave field in- sion. It is Clear, first of a”, that EC(.S].) is a variant of the

side the slab is described by the 1D version of the Helmholtznultiple scattering theory, because the perturbative approach

Eq. (2.1). For an incident wave with a unit amplitude, the is applied here not to the wave functithitself, but to the

reflected and transmitted waves are defined by complex rélecrement of the field, and in this sense the result sums a

flectionr (L,k) and transmissio(L,k) coefficients, respec- subset of the terms in the multiple scattering series. Also, in

tively, which are functions of the thickness and the wavethis approximation the correlation function plays the role of

number, on the one hand, and depend on the realization &eattering potential, and the spectrum of the scatterer, usually

the scattering potential, on the other. Although the transmit2Pplied to the calculations of deterministic scattering, is re-

tivity T(L,k)=|t(L,k)|? of the system is a random function, Placed here by thpower spectrum .

it can be shown explicitly that-L~1InT(L,K) is the self- The relation(3.1) shows that in the lowest-order approxi-

averaging quantity which tends to the inverse localizationmation, only =2k components of the spectrum are respon-
length & 1(k) [8]. In other words, the transmittivity de- Sible for the localization of wave with wave numberThis

Now we proceed with the analysis of the localization
gth in the simplest 1D system described by the 1D version
Eqg. (2.1. In the lowest order of randomness, the proce-
re of self-averaging leads to the classic ref8itfor the
inverse localization length:

creases typically as fact allows a clear physical explanation to be applied to the
localization of waves in 1D systems. Indeed, the wave propa-
T(L,k)= exd —L/&(k)], L—o. (2.4  gating initially with wave vectok [see Fig. 1a)] is trans-

formed by the componer€ = — 2k of the scattering poten-
This behavior is related to the property @ynamical local- tial into the wave with wave vector k, and after that back
ization of the wave function, i.e., the localization that char- to k by the componenK = 2k. It is such subsequent inter-
acterizes the transport of the wave in a typical realization. change of the momenta between the two channels, of for-
On the contrary, the transmittivity itself is not a self- ward and backward propagation, coupled by the disorder,
averaging quantity. In fact, its mean val(&(L,k)) evalu-  which forms a localized state in the 1D system. This effect,
ated for the same system decreases much more slowly, witlthich can be recognized as a simple Bragg resonance, is
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K=2x K= -2k in crystallography and related fiel¢23,24]. The Ewald con-
struction is, in principle, a mapping of the wave vectors onto
| | the K space(reciprocal latticg of the crystal. Actually, we
first draw the wave vectde of the incident wave such that its
endpoint is at the origin of the Fourier space, the p#int
Ky =0. Assuming then that the initial point of the wave vector
k’ coincides with that of vectok, we find that the endpoint
2k of k’ lies on a sphere of radidsdue to the energy conser-
vation in elastic scatteringlk’|=|k|. The points of this
sphere, which is referred to as the Ewald sphere of reflection
(Ewald circle in the 2D caseinclude all possible spectral
components of the medium which could elastically transform

the incident wave into a resonantly scattered one. For a per-
fect crystal, when the positions of atoms are periodic func-
—2k ok tions, a strong scattering occurs when the Ewald sphere
Kz passes through a point of a discrete reciprocal lattice. In
» J

structureless random media, which we deal with here, the
spectrum is continuous and resonant scattering is produced
Ewald by gll points of the Ewald sphere.' These poﬁnts, therefore,
sphere define the channels coupled to a given one with wave vector
k. One of these channels, say, that is defined by the wave
Limiting vector k’ shown in Fig. 1b), determines a new Ewald
et sphere -
(b) ok sphere, andz consequent_ly, a set of possible spectral compo-
nentsK leading to scattering into all other coupled channels,
only one of which is exactly the scattering in the initial di-
rectionk.
Now we rotate the vectdt, such that its endpoint is fixed
at the origin, and its initial point thus lies on a sphere of
radiusk. This operation covers all possible directions of the
theident wave, and indicates that the components of the spec-

their endpoints lie at the origirK=0. The exchange by the mo- ””_'”.‘ participating in the Bragg scattering, and, hgnqe, deter-
menta between these two waves is governed in the lowest-orde) 'r_",ng theglobal (Bragg) reso,nanceare Ioce}teq within the
approximation by the relevant Bragg componeits=( 2k) of the |rr_1|t|r_1g sphere of radius I?__ Itis _Worth mentioning tha_1t, in
scattering potential(b) Multidimensional case(2D example is Principle, the scheme of Fig.@) is a degenerate version of
shown. The points of the Ewald sphere for a given wave vektor this construction. Unlike 1D systems, with only two possible
determine all possible spectral components that could resonanthannels —of — counter-propagating waves, in  many-
transform the incident wave into a scattered one. The limitingdimensional systems there is an infinite number of different
sphere encircles all spectral components coupling any two wavehannels. It is cleaa priori that the coupling between dif-
vectors in the process of elastic scattering. ferent channel$wave vector directionsshould play a very
important role in the scattering process leading to possible
used widely in modern optics technologies dealing with pewave localization. Qualitatively, the stronger the coupling
riodic and near-periodic structuréfiber Bragg filters, dis- between any given channel and the backward or near-
tributed feedback lasers, etcObviously, in the higher or- backward ones, the higher are the possibilities for the me-
ders of the perturbative approach, other potential harmonicdium to localize the wave. On the contrary, coupling with
are also involved in this process. For example, in the secontéteral and, what is more, with a direction near the given one,
order one has to take into account all possible pairs of harshould suppress or destroy the localization.
monics K1,K,) with the total wave vectoK=K;+K, It would be very beneficial to study the multidimensional
=+ 2k, etc. However, having in mind a possible generaliza-systems in the same manner as has been done for the one-
tion of this picture to multidimensional systems, we will re- dimensional case, and, when the localization is possible, to
strict ourselves by considering the lowest-order approximaebtain the localization length as a functional of the power
tion only. spectrum® (K). However, we cannot directly apply the
In many-dimensional systems, the lowest-order resonartoncept of self-averaging to multidimensional systems with
componentK of the spectrum® (K) should satisfy the an infinite number of scattering channels, and only an
Bragg law, ensemble-averaged quantity, such as mean intensity of the
wave, could be evaluated. The intensity is not a self-
k'=k+K, (3.2 averaging quantity, and, moreover, unlike the transmittivity
of a slab, it is not bounded from above. As was first shown
where the wave vectors andk’ are related to an incident by Frischet al. in Ref. [20], where the 1D problem was
and resonantly scattered waves, respectively. To illustrate theonsidered, the intensity pattern inside the medium has a
situation, we will use the momentum diagrdiig. 1(b)] very complicated structure. Along with a general exponential
which is known as the Ewald construction and widely useddecrease of the wave intensity and natural oscillations with

FIG. 1. Momentum diagram, representing schematically the pro
cess of resonant scattering in a weakly disordered med@)rne-
dimensional case. The wave vectors of two counter-propagatin
waves,k and —k, are mapped onto th€ space in such a way that
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spatial extent of the ordek™ !, there exist rather extended IV. CALCULATION TECHNIQUE
“dark” regions of small intensity, with infrequent sharp
spikes of local enhancements of the field at some rando
positions.inside the medium. Th'e amplitude of théseal intensity of the wave at a poirR due to a point source
(stochastic) resonancesn be arbitrarily large, and may ex- |5.ated aRy,
ceed any given value, including the entry level. The effect of
local resonances can be observed in systems of any dimen- (I(L,k))=(G(R|R)G* (R|Ry)), 4.1
sionality[11,25], and is clearly responsible for the lowering
of the energy transport velocity and the enhancement of nusvhereL =|R—Ry|, and the wave vectdk is directed along
merous nonlinear effects. The positions of these resonancethe line connecting the source with the observation point.
and even the fact of their existence itself, are extremely ser@bviously, in statistically isotropic media the mean intensity
sitive to the exciting frequency, and, as in the case of elecdepends only on the distante and, in the case of a homo-
tromagnetic waves, depends strongly on their polarization. geneous medium the intensity in the far fiégdd>1 decays

At this point one essential remark is in order. Althoughas!o(L)~L*"™. In a random medium, any deviation from
we use the same tern‘esonance’s‘for both g|0ba| and local this asymptotic behavior should reflect the coherent effects
ones, it is important to understand the difference betweefNd serve as an indication to the wave localization, at least in
these two notions. Whereas the local resonances are of1€ Statistical sense.

served in the configuration space, the global ones are inher- 1€ usual approach to the calculation of mean intensity in
ent for the momentuniwave vectoy space. Moreover, un- random media is based on the Bethe-Salpeter equation for

like local resonances which are functions of a specifict.he coherence function, which can be solved only perturba-

realization, the global resonances manifest themselves WhetWGIy [29]. The first-order (laddey approximation corre-

a (self-) averaging is applied. Also, contrary to global reso_SPQndS to a partigl summation of the complete perturbation
nances determining the tranéport ,properties of typical mac§e”es’ Wh'.Ch retaln's terms OT any ordgr. prever, the coher-
. ’ nce function obtained in this approximation takes into ac-
_roscoplcally large, sample_zs, the Iocal_ ones mean the _Ioca count an essentially restricted class of scattering diagrams,
ized storage of energy inside the medium for some particulagyecifically, those describing only single scattering of the
realizations of the disorder. _ wave by a given scatterer. When also the inhomogeneous
Some of the local resonances, namely, those with a larg@aves are excluded, the ladder approximation for the coher-
qua“ty faCtOI’, are Sim”ar to the |0ca|ized mOdeS eXiSting inence function reduces the prob'em to a phenomeno'ogica|
infinite systems. In fact, going further with the analogy to aequation of radiative transfer in which the coherent effects
periodic structure, we may think about an effective Braggare neglectedi29]. At the same time just the coherence and
lattice, within which some small defects are introduced. Thisconstructive interference between multiply scattered waves
leads to the appearance of the so-called defespurity)  gives rise to enhanced backscattering and strong localization.
modes[26], with their centers distributed somehow within To account for these effects, it was proposed to include also
the medium. In finite systems, such modes can lead, wheimto consideration, the maximally crosséxyclic) diagrams,
the concentration of the defects is sufficient for a percolatiorwhich correspond to the motion of the wave along the time-
to be achieved, to an enhanced transmission for a corrgeversed paths with respect to the paths determined by the
sponding resonant frequen¢27,28, i.e., in our terminol- ladder diagrams. In fact, as was shown, the maximally
ogy, to some kind of untypical realizations with~1. In the  crossed diagrams allow one to describe the enhanced back-
case of ideal transparency, the scattering states within th&cattering, in particular, to obtain the enhancement factor
slab show distinct features of localization, although, strictly~2, that coincides exactly with known experimental results,
speaking, it is senseless to talk about it because of their cowbtained in the weak scattering regirt¥]. However, for
pling to the propagating modes outside the slab. stronger scattering, when the mean-free-path reduces to the
Despite the rarity of such realizations, the local enhanceerder of wavelengtha possible threshold of localizatipn
ments of the field may be exponentially large and their conthe enhancement factor decreases essent[@]. This
tribution to the mean intensity may be significant. However,means that all other diagrams come into play. In particular,
in the lowest-order approximation, when the mixing of dif- the effect of recurrent paths, which describe multiple scatter-
ferent spectral components is absent, the elimination of locahg on the same inhomogeneities, can be crucial. As a result,
resonances may be reduced to a filtering in khepace. In  restricting ourselves to the ladder and maximally crossed
fact, in this approximation the spectral content of these twaliagrams only, we cannot describe correctly the phenomenon
phenomena is different: whereas the global resonances aod strong localization.
related, as we have seen, to the frequencies within the limit- Here we use an alternative approach, starting the analysis
ing sphere of the Ewald construction, the local resonancesf the wave localization in multidimensional systems with
are defined by spectral components lying outside this spheréhe reduced Helmholtz equation for the Green’s function
since only these harmonics could provide for spatially local-G(R|R,). Next, we apply the embedding procedure origi-
ized, narrow resonant spikes of the wave pattern. Consearally proposed by Fock for the integration of quantum me-
quently, our main assumption here is that in the lowest-ordechanical equations. The idea of the method is based on the
approximation we can extract the global resonances, leadinigtroduction of an additional pseudotime variabl@nd the
to a dynamical localization, from the complete spectral “por-transfer to a higher-dimensional space, in which the propa-
trait” characterizing the stochastic localization of wave in agation process is described by a parabolic equation similar to
disordered system. the nonstationary Schrodinger equation in quantum mechan-

To study the resonances and localization in a multidimen-
rQional(rrrdimensiona)l system, we should evaluate the mean
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ics [21]. The serious advantage of this approach is that ifThe filtering functionf(K) in Eq. (5.3) has the form

allows us to describe the recurrent events, dealing with an . 72

equation which satisfies the dynamic causality condition and, f(K)=—K™*8(K—|2k-K/K[) +K™“3(K—|2k-K/K]),

therefore, may be presented in a path-integral form. (5.4
We then use this representation for the asymptotic evaIL\N

. . e ' where, 5(z) is the Diracé function, andd(z) is the Heavi-
ation of the mean intensity in the case of weak disorder. Th%ide step function. The spectral componEnsatisfying the

weakness of the disorder means here that the range of PR5ndition % - K = K2 is the frequency of the Bragg reflection

rameters which we are interested in is described by intermer'esonance that, as was demonstrated above, should play a

diate asymptotics central role in the mode coupling between different scatter-
N <L</y, (4.2  ing channels. _ o
Since we have used a firftnear correction in the per-
wherel, is the correlation radius of the disorder, aridis turbative expansion, there is a direct connection between the
the conventionally defined mean-free path. Surprisinglyfwo terms in Eq.(4.4) and the corresponding ones entering
even in this approximation, the technique still does retain thé=d. (5.4). The first term in the latter equation originates from
main feature of the embedding procedure, which is capablthe one-path correlations, and, being considered separately,
of describing the recurrent events. In fact, this will allow usgives a doubled extinction coefficient, which defines the de-
to go beyond the ladder approximation, and to obtain theay of the coherent field, evaluated in the framework of the
correction term which is related to the phenomenon of strongame approach. We deal, however, with the total intensity of
localization[31]. the field, and the presence of the second term, which arises
The calculations of the mean intensity are reduced then térom the two-path term in scattering function, and contrib-
the self-consistent two-step perturbative procedure as foMtes to the final expression with opposite sign, is of great
lows. At the first step, the mean intensity is approximated byimportance here. As we will see below, accounting for this
a double path integral of the function&2] term allows one to obtain the dimensionality dependence,
2 L ] fitting, in general, the pr(edictions of the scaling theory.
] Although in both Eqs(5.1) and(5.2) the wave correction
ex‘{@ fo dtlfo dtF (L.t Ry R (43 g jess than unity, which is simply the condition of validity of
the result, these equations, being equivalent in this case, have
where the scattering functidf(-) is given by a different behavior if we try to extrapolate the results to the
5 case of non-smal. In fact, for negative values of, we
have an indication of the exponential localization, i.e., we
F(tl’IZ;Rl(t)vRZ(t)):_Zl B.[Rj(t) —Rj(tz)] present the results in the form of E¢.2). If xy=0, we
. assume then that there is exponentigl localization, and
+2B,.[R4(t1) —R»(t2)], (4.4  the mean intensity, being presented in the fdisl), de-
creases far from the source more slowly than in a homoge-
and the vectorR,(t) denotes a “causal” trajectory in the neous medium.
(R,7) space. At the next step, the path integral is evaluated For isotropic spectré (K), we arrive at the expression
perturbatively, which leads to a small correction to the value
of Io(L). What is important is that the wave correction ob- *
tain?ad describes th@xponentigl decay of the mean inten- x(k)=mk?L fo dKTn(K)@(K), (5.9
sity in the first order of the correlation function of the scat-
tering potential, and conforms, in that sense, to our needwhere the form of the filtering functiofi,,(K) depends on
formulated in Sec. Il. the dimensionality of the problem. In one, two, and three
dimensions this function reads, respectively,

V. STOCHASTIC LOCALIZATION
f1(K)=—(k/IK) 8(K —2k) + (k/K?) 9(K — 2k),

Applying a probabilistic interpretation to the path integral, (5.6a
and denoting the unknown wave correction pyk), we o o1 .
present the intensity of the wave in a moment, fo(K)=—=[(1—K*/4k%) "= (2k/K)arcsinK/2k)]
(LK) =l o(L)[ 1+ x(K)+...], (5.1) X 9(2k—K) + (7k/K) (K —2Kk), (5.6b
or cumulant, f3(K)=27k9d(K—2K). (5.60
(I(L,k))=lo(L)yexd x(k)+...1, (5.2  The behavior of the filtering function is shown in Fig. 2. Itis

seen that in the lowest-order approximation the effect of dis-
form, respectively. Then, using a formal transitiba- o, order is split into two terms having opposite signs. Unlike
i.e., the transfer to a plane wave expansion, we find that ththe one- and two-dimensional cases, the negative term is
wave correction is proportional linearly to the distance fromabsent in three dimensions.
the source and is given by To exemplify the results we use the simplest Gaussian
correlation function

x(k)=gk3LJ d™KT(K) D (K). (5.3 B.(R)= o2 exp(—R¥12). (5.7)



PRE 60 RESONANCES AND LOCALIZATION OF CLASSICA . .. 6087

0.15 :
“:L 0.10
. E 0.05
< 0 ¥ o~ L
== |0 2k K & o000
< 2
5 005
-3(K-2k) >
(@ E -0.10
=
: E -015
: g I
i _020 1 | 1
: 0.1 1 10
< 0 Normalized wave number «
— 0 2k
S FIG. 3. Normalized wave correctios(x):x(x)lloﬁ (dashed

line) and its filtered versiors; (k)= x; (x)/lo? (solid line) plotted

; as functions of the normalized wave numlet ki, for statistically

(b) ' isotropic media. The behavior of the correctigtk) reflects the
properties of the medium for a statistical ensemble of all possible
realizations. The correctiog («) is related to the dynamical local-
ization, i.e., to the behavior of the wave in a typical realization of
the scattering potential. In the three-dimensional case, the filtered
wave correctiony; («) vanishes for isotropic media.

low-frequency positive part of the correction. It means that at
these frequencies the decrease of the intensity due to local-
ization is slower than the increase of probability to excite a
(© local resonance at any point of the medium. In three dimen-
FIG. 2. Schematic representation of the filtering functigK) sions, the wave correction .IS. _posmve, with th? maximurm
for 1D (a), 2D (b), and 3D(c) statistically isotropic media. It is seen observed neak—1. The positivity OT the correctlon means
that for K>2k in all cases there is a positive tail proportional to t[hat apart. from the regul_ar term which decays.as, there
KM-3. For K<2k, the behavior of the filtering function, which is 'S &0 additional term which i\rllses from the local resonances
negative in general, depends essentially on the dimensionality of th@"d decays more slowly, as -
problem: in the 1D case there is only one discrete component lo-
cated atk=2k; in 2D it is a monotonically decreasing function
with a singularity at X from the left; and in the 3D case the nega-
tive part is completely absent for isotropic media. To extract the information about dynamical localization
from the data obtained, we follow the approach proposed in
For this function we introduce two dimensionless param-Sec. Il. Specifically, we have to eliminate the contribution of
eters: the normalized wave numberKkl,,, and the normal- |ocal stochastic resonances, keeping the Bragg resonances
ized distancel=L/I.. In terms of these parameters, the only. In the simplest case of 1D media, the filtering function

VI. DYNAMICAL LOCALIZATION

wave correctiony(x) in any dimension takes the form f1(K) consists of two terms. One of them is discrete and
) extracts the main Bragg componefits: + 2k. Another term
x(k)=s(x)loy, (5.8 is continuous and accounts for a high-frequency tail of the

spectrum® (K). According to our idea, this is related to

where the coefficierd(«) has to be evaluated numerically in |54 resonances excited inside the medium. To calculate the

the general case. The dependence of the coeffiseton fijtered version of the wave correctiog;, we keep the dis-
the normalized wave numbet is shown in Fig. 3 by a crete term only, which leads to

dashed line. The general property of the result is its crucial
dependence on the dimensionality of the system.

In the one-dimensional case the wave correction is strictly
negative, and it is true not only for the Gaussian model, but
also for any medium with a monotonically decreasing spec-
trum. Ther_efore,_we_ can predict an exponential-type decay OIfnasmuch as the negative sign of the correction is interpreted
the wave intensity inside the medium even for an ensemble . . e :

. o - as a signature of exponential localization, then by using the
of all possible realizations. In the limiting case obaorre- relation between the filtered wave correctionand the in-
lated potentialthe power spectrum is the same constant forverse localization lengtl* on
any frequency the wave correction is zero, which can be 9 '
easily verified by direct integration. In two dimensions,
along with a negative sign at higher frequencies, there is a EYk)=—xs(K)/L, (6.2

a
xs(K)=— EkzLQJS(Zk). (6.2
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we arrive at nothing else than exactly E®.1), obtained
within the framework of the perturbative self-averaging pro-
cedure.

Our idea, stimulated by the above consideration, is to ex-
tract only the spectral components lying within the limiting
sphere, from the wave correction given by the expansion
(5.3 in 2D and 3D systems. The result for the filtered ver-
sion of the correction has the form

100

10 |

Localization length £(x)

ar
yi(K)= Ek3Lf d"K F(2k—K)f (K)D(K). (6.3

We see that in many-dimensional systems, where an infinite 0.1 1 10
number of coupled channels exists, the result is determined Normalized wave number

by competition of two effects. The first one, which is related

to the first term of the filtering functiofb.4) appearing with FIG. 4. Localization lengthé(x) plotted as a function of the

a minus sign, tends to localize the wave. For any given vecnormalized wave number=kl, for 1D and 2D statistically isotro-
tor k we integrate the power spectrum over the two Ewaldpic media. The localization length is normalizedatp and is given
spheres, with the weighting factét 1. The second effect, in units ofl, .
related to(the part of the second term of the filtering func-
tion, which has an opposite sign, is to suppress or destroy thermediate asymptotic&.2) can quickly fail to be valid.
localization. To account for this contribution, we integrate Nevertheless, the same effect has been observed recently in
over the area within the limiting sphere, but outside thenumerical simulation§33], where the localization length for
Ewald spheres of reflection, with the weight 2. When the 2D strongly disordered systems was shown to saturate at
direction ofK coincides with the direction that is backward relatively high frequencies.
to a given wave vectok, then the contribution of the delo- In three dimensions, for isotropic systempg k)=0, i.e.,
calizing term vanishes. The farther the directionkofrom  despite the existence of local resonances, enhancing the field
the backward one and the closer it is to the initial propagaat some random points and thus accumulating the energy
tion directionk, the greater the contribution of the delocal- inside the medium, the wave cannot be localized in the
izing term to the filtered wave correction. This picture cor- Anderson sense. Irrespective of the true existence of the mo-
relates very well with the qualitative considerati@®ec. I bility edge in 3D systems with classical waves, when the
of the relative role of the coupling between different chan-strength of the disorder is energy dependent, our approach,
nels in the Ewald construction. which is based essentially on a perturbative procedure, can-
For a given spectrumb(K) the final result depends not describe such a transition, and other techniques have to
somehow on both the modulus and directionkofHere we  be utilized. Nevertheless, the vanishingxgfin three dimen-
will concentrate on the analysis of wave localization in struc-sions correlates very well with the current situation, where to
tureless isotropic media, when the scattering is independemt the best of our knowledge, the exponential localization has
of the direction. In 2D isotropic media, similar to the 1D not been observed until recently in 3iructurelessystems,
case, the filtered correction is always negatigsee Fig. 3, notwithstanding several claims of being very close to achiev-
solid lineg, and the wave is exponentially localized, with the ing it in such media.
localization length&(x) shown in Fig. 4 as a function of the
wave number. Although a well-defined minimal valuegait
some intermediate frequency band is observed, in the high-
frequency limit the localization length is unexpectedly con- In this work we have studied the localization phenomenon
stant, independent of the wave numligeiThis result contra- in the scalar wave approximation. By using the notions of
dicts a common belief that the high frequency behavior ofensemble and self-averaging, we could distinguish between
the wave, being governed by the geometrical optics ruleshe properties of stochastic and dynamic behavior. Combin-
exhibits only extending states. The argument, however, is ndhg then the perturbative path-integral technique with the
convincing by itself, because even high-frequency mechaidea of spectral filtering, we have analyzed the transport
nisms, such as whispering-gallery resonances, combinggroperties of a random system in the localization regime.
with a constructive interference, may confine the waveThe results obtained are limited, obviously, by the lowest-
within a finite domain, the effect that is reminiscent of the order approximation, i.e., by the weak disorder limit. How-
corresponding type higlp resonances in circularly symmet- ever, even the short consideration of a self-avoiding-walk
ric disks. Besides, unlike electronic systems, where at lowanalogy given in Ref{22], shows that the limitations of the
energies the electron is always trapped in the wells of disorperturbative procedure, which has been utilized, may be es-
dered potential, for classical waves the high-frequency limitsentially different in various dimensions. In fact, when we
corresponds to the increase of the scattering strength of thteansfer, in turn, from one to three spatial dimensions, there
potential. On the other hand, we have to remember that als more and more phase space available for the trajectory to
the results obtained in this paper are limited by the lowestavoid the intersection points, which contribute to the path
order approximation. The increase of the wave number leadstegral, and the same perturbative result may account for a
clearly to a decrease of the mean-free-pdth and the in-  stronger disorder in higher dimensions. Therefore, the limi-

VIl. SUMMARY
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tations that are very strict in 1D, may be weaker in 2D, andjnclusion. It is clear, at the same time, that only the combi-
perhaps, not so serious in the three-dimensional case. nation of all these paramete(t® which we can add the vol-
Although the purpose of the present work was to studyume filling factor, which is not independent, howeydorm,
random media(scattering potentials with correlations de- on an equal footing, the static structure factor, which, in its
creasing at infinity, there is a naturally arising question of turn, is likely to define the localizing properties of the me-
whether the results obtained could be related in any way tdium. The same conclusion may be related also to the con-
periodic or near-periodic structurgshotonic crystalsexhib-  nectivity of inclusions and the symmetry of the resulting
iting band gaps in their spectra. In periodic media the valuestructure, the questions that have been explored intensively
of ®.(K) has obviously the meaning of a static structurein many recent works by using a “cut-and-try” approach,
factor that can be easily calculated for any composite mateeither by computer simulations, or in real experiments
rial, and then the value of; (k) can also be evaluated for a [17,19.
givenk according to Eq(6.3). Could one maintain that the If criterion (7.1) is actually relevant to a search for local-

wave would be localized if ization in periodic structures, some other questions arise:
Could we predict the kinds of structures, and estimate the
xt(K)<0 (7. optimum values of their parameters, that are most favorable

. . e . . . for the appearance of large absolute band gaps? What are the
for all directionsk/k (if it is possible in principle], and IimitationpsIO of the resultsg in various dime%sliaons? etc. Al-

could one consider this condition as a criterion of Strongthough the work poses more questions rather than giving
localization in such media? Irrespective of the exact ansWefqfinite answers to them. we hope that both the approach
to this question, it is clear that in any case, the form of Eq '

. itself and the final results offer a physical insight into the
6.3 seems to remove the problem .Of the M|e-Bragg Con.tro'problem of wave localization, and may stimulate further re-
versy in creation of gaps, by reducing it to a termlnologlcalsearch in this direction

difference only. In fact, when one speaks abBragg scat- '

tering in periodic structures, one means usually that the spa-

tial perlgd of the structurélattice c_onstar)tmatches,_ in an ACKNOWLEDGMENT
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