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Resonances and localization of classical waves in random systems with correlated disorder
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An original approach to the description of classical wave localization in weakly scattering random media is
developed. The approach accounts explicitly for the correlation properties of the disorder, and is based on the
idea of spectral filtering. According to this idea, the Fourier space~power spectrum! of the scattering potential
is divided into two different domains. The first one is related to theglobal (Bragg) resonancesand consists of
spectral components lying within a limiting sphere of the Ewald construction. These resonances, arising in the
momentum space as a result of a self-averaging, determine the dynamic behavior of the wave in a typical
realization. The second domain, consisting of the components lying outside the limiting sphere, is responsible
for the effect oflocal (stochastic) resonancesobserved in the configuration space. Combining a perturbative
path-integral technique with the idea of spectral filtering allows one to eliminate the contribution of local
resonances, and to distinguish between possiblestochasticand dynamical localization of waves in a given
system with arbitrary correlated disorder. In the one-dimensional~1D! case, the result, obtained for the local-
ization length by using such an indirect procedure, coincides exactly with that predicted by a rigorous theory.
In higher dimensions, the results, being in agreement with general conclusions of the scaling theory of local-
ization, add important details to the common picture. In particular, the effect of the high-frequency localization
length saturation is predicted for 2D systems. Some possible links with the problem of wave transport in
periodic or near-periodic systems~photonic crystals! are also discussed.@S1063-651X~99!08010-1#

PACS number~s!: 42.70.Qs, 41.20.Jb
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I. INTRODUCTION

The localization of waves in random media is a topic
increasing current interest, owing to its fundamental role
wave-matter interactions, and also by the significance of p
sible applications. Localization appears in systems gover
by time-reversible wave equations, and contradicts the u
intuition-grounded ideas that form the basis of radiat
transfer theory. The concept of localization, originally dev
oped for electrons in disordered solids@1#, was transferred
later to classical waves, in particular, to electromagnetics
acoustics~for a review see Refs.@2–4#!. The enhanced back
scattering of waves, which is sometimes referred to as w
localization and can serve as a precursor of strong loca
tion, was observed experimentally in the mid 1980s by s
eral groups@5#. Being anticipated in some earlier works as
correction to the conclusions of radiative transfer theory@6#,
the effect has been analyzed recently in a great numbe
papers as a counterpart of its electronic analog, with a
collection of the results that now constitute a well-develop
theory.

In the case of strong localization, our understanding of
phenomenon has, as a matter of fact, a qualitative chara
only. It is well known that the randomness of the potent
leads to the appearance of localized states in disordered
tems ~see, e.g., Ref.@7#!. The localization manifests itsel
most strongly in the one-dimensional~1D! case where even
an arbitrary weak disorder causes exponential localizatio
all states of the system@8#. In two-dimensional~2D! systems,
according to the scaling theory of localization@9#, all states
are also localized, whereas in three dimensions~3D! the situ-
ation seems to be much more complicated and depend
sentially on the relative strength of the disorder. The abse
PRE 601063-651X/99/60~5!/6081~10!/$15.00
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of extending states in the regime of strong localization infl
ences, in a most radical manner, the transport propertie
the system@10#, which is used in practice to search for th
localization. The strong~exponential type! localization was
observed experimentally in 1D and 2D random systems w
classical waves@11,12#, but in 3D no experimental confirma
tion of strong localization in structureless media yet exi
beyond doubt~see, however, Refs.@13# and @14#, where
some signatures of possible localization in three dimensi
have been reported!.

Despite a huge number of related investigations, ther
no unified theory that is able to describe consistently all
details of the wave localization beyond the existing gene
picture, and, therefore, a quantitative analytical descript
of the phenomenon still presents a challenge. The most
portant question here concerns the relation between the
calization and its characteristics, say, localization length,
the one hand, and the correlation properties of the poten
on the other. At the same time, most of the existing a
proaches, with only few exceptions, treat the problem p
nomenologically, for instance, describing the potential a
d-correlated field, which obviously puts such formulatio
entirely outside the realm of the question.

The study of wave localization is most advanced in on
dimensional systems, for which it has been possible not o
to prove the existence of localization, but also to estimate
localization length@8#. It can be shown, in particular, that th
localization length is determined by those frequencies in
power spectrum of the potential that are known as Bra
resonances, and which we will also callglobal resonances
hereafter. In the lowest order, with respect to the strength
disorder, the localization length is described by the frequ
cies of the main Bragg resonance in an effective perio
lattice, when the wavelength is twice the lattice constant
6081 © 1999 The American Physical Society
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In multidimensional systems, relations between the loc
ization and the correlation properties of the disorder have
been understood completely. However, in recent years it
been conjectured that the localization of classical wave
not simply the result of a higher degree of disorder, for
stance, due to Mie resonances of independent uncorre
scatterers~a microscopic point of view!, but rather the
byproduct of an interplay between order and disorder. T
idea, formulated by John@15#, underlines the importance o
structure to set up the localization in random media. Mo
over, strong localization in 3D seems to be observed u
now only in periodic or near-periodic composite materia
which were proposed by Yablonovitch@16# and are usually
referred to as photonic crystals, although they are not lim
to the optical, but, rather, are possible for other ranges of
electromagnetic spectrum, or for waves of other natu
such as acoustic~elastic! waves@17–19#. Starting from the
above idea, in the present paper we go further in thismac-
roscopicmode of thinking, suggesting that the localization
multidimensional systems is determined by the power sp
trum of the potential taken somehow at the same frequen
of global resonances, in close analogy with what has b
shown in one dimension.

Unlike the 1D case, to which the concept of se
averaging can be directly applied, in multidimensional me
we are usually confined to estimating the mean value o
fluctuating quantity, i.e., by averaging over the ensemble
all possible realizations of the potential. The difference
tween self-averaging and ensemble averaging is of great
portance for the localization phenomenon. To underst
this, let us consider the problem of wave transmiss
through a slab of a randomly inhomogeneous medium. E
in the 1D case, where any degree of disorder leads to lo
ization, and, hence, the transmission is exponentially sm
for almost all realizations, inside the medium, along with t
general decrease and natural oscillations, there are enha
ments of the wave intensity observed at some random po
@20#. These spikes, which we will calllocal resonanceshere-
after, can exceed any given level and, obviously, are inhe
to multidimensional systems as well.

As a result, when one performs, as usual, ensemble a
aging for the wave intensity, which is not a self-averagi
quantity, one cannot say anything definite about the beha
of the wave in a typical realization. The reason for this si
ation is that the intensity may be exponentially large due
local resonances and, in spite of the rarity of these eve
they give an essential contribution to the mean value. Th
fore, we have to distinguish between the notion ofdynamical
localization, describing the transport properties of the m
dium in typical realizations and determined by global re
nances only, on the one hand, and that ofstochastic local-
ization, i.e., localization of the average wave intensi
related to the properties of the whole statistical ensembl
realizations, and determined by all components of the sp
trum, on the other. Consequently, to study a possible
namical localization in the system, we must extract someh
the hidden global resonances or eliminate the contributio
local ones. This is not so simple to do as to say, but it can
facilitated in the lowest-order approximation, when the m
ing of different spectral components is absent, and, as
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conjecture, the procedure can be reduced to a filtering in
Fourier space.

According to this idea, which represents a central point
the present work, the algorithm that is utilized here is
duced to the two-step procedure as follows. First, to anal
the behavior of the system for an ensemble of all poss
realizations, we use the perturbative path-integral appro
developed recently in Refs.@21# and @22#. Then, to study
dynamical localization, we perform a filtering of the resu
thus obtained for the mean intensity, in the Fourier spa
keeping the contribution of global resonances only. Thou
such an indirect and rather involved procedure, making so
fine distinctions between self-averaging and ensemble a
aging, or, respectively, dynamical and stochastic behavi
is used, the final results are very simple. The wave trans
through the system is described by a functional of the po
spectrum of the scattering potential, i.e., the correlation pr
erties of the medium are accounted for in an explicit for
The functional may be easily evaluated for any given pow
spectrum, and, what is more, its form allows one to expl
the localization as a complex interaction of different glob
resonances, i.e., in terms of some regularity hidden in
realization of the random system. The sign of this functio
can serve as a test for the localization to be possible, and
absolute value is related to the localization length, when
localization is achieved. This functional depends crucially
the dimensionality of the problem. In the 1D case the res
coincides exactly with that obtained previously by maki
use of an independent rigorous procedure based on the
cept of self-averaging, that may be appraised as an indi
confirmation of the validity of the proposed approach. In
higher dimensionalities the results, being generally con
tent with known predictions of other theories, offer add
tional important details to the general picture. In particul
the effect of the high-frequency localization length saturat
is predicted for 2D systems. Some possible links with
problem of wave transport in periodic or near-periodic s
tems~photonic crystals! are also discussed.

The outline of the paper is as follows. In Sec. II we co
sider the differences between self- and ensemble averag
exemplified by a 1D problem of wave transmission throug
slab of disordered medium. Next, in Sec. III we introduce t
notions of global and local resonances, and discuss thei
timate relevance to various aspects of the localization p
nomenon. In Sec. IV we give a brief description of the ma
ematical procedure aimed at the asymptotic calculation
the mean intensity radiated by a point source in a rand
medium. The results, which characterize stochastic and
namical behaviors of the wave, are formulated in Secs. V
VI, respectively. The final section contains a summary a
some concluding remarks.

II. SELF-AVERAGING VS ENSEMBLE AVERAGING

To analyze the behavior of classical waves in rand
systems we use the simplest model, based on the red
Helmholtz equation,

¹2U~R!1k2@11 «̃~R!#U~R!50, ~2.1!

wherek52p/l is the wave number associated with a hom
geneous medium, and«̃(R) is the permittivity distribution
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~scattering potential!. The statistical properties of the syste
are described by a set of correlation functions of the sca
ing potential, which is supposed to be a random function
coordinates, with zero mean value. In particular, we will u
the correlator

B«~R!5^«̃~R8!«̃~R81R!&, ~2.2!

that, being Fourier-transformed, determines the power s
trum F«(K ) of the scattering potential,

F«~K !5~2p!2mE dmR exp~2 iK•R!B«~R!. ~2.3!

We assume that the system is statistically uniform on av
age, with correlations decreasing at infinity. This means
fact that in the infinite systemall realizations of the random
function «̃(R) are identical~with probability one! up to a
spatial shift@7#. The latter property results in the existence
self-averaging quantities that may be associated with s
random systems. For these quantities the average with
spect to volume~size! of the system becomes~when the vol-
ume tends to infinity! the average with respect to realizatio
of the potential. The behavior of the mean value of a n
self-averaging quantity is completely different. To unde
stand this let us mention that in a finite system the meas
of the ‘‘typical’’ realizations is close to unity but does no
reach unity. In the general case, only these typical real
tions contribute to the mean value of a non-self-averag
quantity and its qualitative behavior reflects, more or le
the behavior of the same quantity in a typical realizatio
However, the averaging could sometimes drastically cha
the character of the quantity. This happens usually when
nontypical, low probability realizations give an essent
contribution to the mean value; this fact explains nam
these realizations as representative ones.

The difference between self- and non-self-averag
quantities manifests itself in the clearest manner in the w
localization phenomenon. To illustrate this let us consi
the 1D problem of a plane wave transmission through a s
of disordered medium with thicknessL. The wave field in-
side the slab is described by the 1D version of the Helmh
Eq. ~2.1!. For an incident wave with a unit amplitude, th
reflected and transmitted waves are defined by complex
flection r (L,k) and transmissiont(L,k) coefficients, respec
tively, which are functions of the thickness and the wa
number, on the one hand, and depend on the realizatio
the scattering potential, on the other. Although the transm
tivity T(L,k)[ut(L,k)u2 of the system is a random function
it can be shown explicitly that2L21 ln T(L,k) is the self-
averaging quantity which tends to the inverse localizat
length j21(k) @8#. In other words, the transmittivity de
creases typically as

T~L,k!} exp@2L/j~k!#, L→`. ~2.4!

This behavior is related to the property ofdynamical local-
ization of the wave function, i.e., the localization that cha
acterizes the transport of the wave in a typical realization

On the contrary, the transmittivity itself is not a se
averaging quantity. In fact, its mean value^T(L,k)& evalu-
ated for the same system decreases much more slowly,
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the decrement four times less, up to logarithmic accuracy@8#.
The reason for this discrepancy is very simple: the repres
tative realizations for the mean transmittivity are small pro
able transparent realizations withT;1. Although the mean
transmittivity also decreases exponentially withL, leading to
a stochastic localization, i.e., the localization that reflects th
behavior of an ensemble of all possible realizations whe
positively defined quantity~transmittivity, wave intensity,
etc.! is implied, it shows mainly an exponentially small me
sure of representative realizations. In spite of the obvio
fact that the localization in a stochastic sense is less me
ingful as compared to its dynamical partner, the evidence
stochastic localization allows one to draw two conclusio
at least. First, the existence of stochastic localization is s
ficient for the fact of dynamical localization to be proved
a given system. In this case, the decrement of the expone
decay of a mean value, obtained in an ensemble of all p
sible realizations, may serve as an estimate of the lo
boundary for the inverse localization length. Second, the
istence of dynamical localization, while being necessary
the same time is not sufficient for the stochastic localizat
to be observed. One can imagine, in principle, that the e
tence of local resonances in a dynamically localizing syst
leads to the situation where the decay of the mean va
becomes, for instance, of a polynomial type, or the funct
even ceases to decrease at all.

III. RESONANCES

Now we proceed with the analysis of the localizatio
length in the simplest 1D system described by the 1D vers
of Eq. ~2.1!. In the lowest order of randomness, the proc
dure of self-averaging leads to the classic result@8# for the
inverse localization length:

j21~k!5
p

2
k2F«~2k!. ~3.1!

The nature of this approximation is worthy of special discu
sion. It is clear, first of all, that Eq.~3.1! is a variant of the
multiple scattering theory, because the perturbative appro
is applied here not to the wave functionU itself, but to the
decrement of the field, and in this sense the result sum
subset of the terms in the multiple scattering series. Also
this approximation the correlation function plays the role
scattering potential, and the spectrum of the scatterer, usu
applied to the calculations of deterministic scattering, is
placed here by thepower spectrum.

The relation~3.1! shows that in the lowest-order approx
mation, only62k components of the spectrum are respo
sible for the localization of wave with wave numberk. This
fact allows a clear physical explanation to be applied to
localization of waves in 1D systems. Indeed, the wave pro
gating initially with wave vectork @see Fig. 1~a!# is trans-
formed by the componentK522k of the scattering poten
tial into the wave with wave vector2k, and after that back
to k by the componentK52k. It is such subsequent inter
change of the momenta between the two channels, of
ward and backward propagation, coupled by the disord
which forms a localized state in the 1D system. This effe
which can be recognized as a simple Bragg resonance
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used widely in modern optics technologies dealing with
riodic and near-periodic structures~fiber Bragg filters, dis-
tributed feedback lasers, etc.!. Obviously, in the higher or-
ders of the perturbative approach, other potential harmo
are also involved in this process. For example, in the sec
order one has to take into account all possible pairs of h
monics (K1 ,K2) with the total wave vectorK[K11K2
562k, etc. However, having in mind a possible generaliz
tion of this picture to multidimensional systems, we will r
strict ourselves by considering the lowest-order approxim
tion only.

In many-dimensional systems, the lowest-order reson
componentK of the spectrumF«(K ) should satisfy the
Bragg law,

k85k1K , ~3.2!

where the wave vectorsk and k8 are related to an inciden
and resonantly scattered waves, respectively. To illustrate
situation, we will use the momentum diagram@Fig. 1~b!#
which is known as the Ewald construction and widely us

FIG. 1. Momentum diagram, representing schematically the p
cess of resonant scattering in a weakly disordered medium.~a! One-
dimensional case. The wave vectors of two counter-propaga
waves,k and2k, are mapped onto theK space in such a way tha
their endpoints lie at the origin,K50. The exchange by the mo
menta between these two waves is governed in the lowest-o
approximation by the relevant Bragg components (K562k) of the
scattering potential.~b! Multidimensional case~2D example is
shown!. The points of the Ewald sphere for a given wave vectok
determine all possible spectral components that could resona
transform the incident wave into a scattered one. The limit
sphere encircles all spectral components coupling any two w
vectors in the process of elastic scattering.
-

cs
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-

nt

he
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in crystallography and related fields@23,24#. The Ewald con-
struction is, in principle, a mapping of the wave vectors on
the K space~reciprocal lattice! of the crystal. Actually, we
first draw the wave vectork of the incident wave such that it
endpoint is at the origin of the Fourier space, the pointK
50. Assuming then that the initial point of the wave vect
k8 coincides with that of vectork, we find that the endpoin
of k8 lies on a sphere of radiusk due to the energy conser
vation in elastic scattering,uk8u5uku. The points of this
sphere, which is referred to as the Ewald sphere of reflec
~Ewald circle in the 2D case!, include all possible spectra
components of the medium which could elastically transfo
the incident wave into a resonantly scattered one. For a
fect crystal, when the positions of atoms are periodic fu
tions, a strong scattering occurs when the Ewald sph
passes through a point of a discrete reciprocal lattice.
structureless random media, which we deal with here,
spectrum is continuous and resonant scattering is produ
by all points of the Ewald sphere. These points, therefo
define the channels coupled to a given one with wave ve
k. One of these channels, say, that is defined by the w
vector k8 shown in Fig. 1~b!, determines a new Ewald
sphere, and, consequently, a set of possible spectral com
nentsK leading to scattering into all other coupled channe
only one of which is exactly the scattering in the initial d
rectionk.

Now we rotate the vectork, such that its endpoint is fixed
at the origin, and its initial point thus lies on a sphere
radiusk. This operation covers all possible directions of t
incident wave, and indicates that the components of the s
trum participating in the Bragg scattering, and, hence, de
mining theglobal (Bragg) resonances, are located within the
limiting sphere of radius 2k. It is worth mentioning that, in
principle, the scheme of Fig. 1~a! is a degenerate version o
this construction. Unlike 1D systems, with only two possib
channels of counter-propagating waves, in man
dimensional systems there is an infinite number of differ
channels. It is cleara priori that the coupling between dif
ferent channels~wave vector directions! should play a very
important role in the scattering process leading to poss
wave localization. Qualitatively, the stronger the coupli
between any given channel and the backward or ne
backward ones, the higher are the possibilities for the m
dium to localize the wave. On the contrary, coupling w
lateral and, what is more, with a direction near the given o
should suppress or destroy the localization.

It would be very beneficial to study the multidimension
systems in the same manner as has been done for the
dimensional case, and, when the localization is possible
obtain the localization length as a functional of the pow
spectrumF«(K ). However, we cannot directly apply th
concept of self-averaging to multidimensional systems w
an infinite number of scattering channels, and only
ensemble-averaged quantity, such as mean intensity of
wave, could be evaluated. The intensity is not a se
averaging quantity, and, moreover, unlike the transmittiv
of a slab, it is not bounded from above. As was first sho
by Frisch et al. in Ref. @20#, where the 1D problem was
considered, the intensity pattern inside the medium ha
very complicated structure. Along with a general exponen
decrease of the wave intensity and natural oscillations w
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spatial extent of the orderk21, there exist rather extende
‘‘dark’’ regions of small intensity, with infrequent shar
spikes of local enhancements of the field at some rand
positions inside the medium. The amplitude of theselocal
(stochastic) resonancescan be arbitrarily large, and may ex
ceed any given value, including the entry level. The effec
local resonances can be observed in systems of any dim
sionality @11,25#, and is clearly responsible for the lowerin
of the energy transport velocity and the enhancement of
merous nonlinear effects. The positions of these resonan
and even the fact of their existence itself, are extremely s
sitive to the exciting frequency, and, as in the case of e
tromagnetic waves, depends strongly on their polarizatio

At this point one essential remark is in order. Althou
we use the same term,resonances, for both global and local
ones, it is important to understand the difference betw
these two notions. Whereas the local resonances are
served in the configuration space, the global ones are in
ent for the momentum~wave vector! space. Moreover, un
like local resonances which are functions of a spec
realization, the global resonances manifest themselves w
a ~self-! averaging is applied. Also, contrary to global res
nances determining the transport properties of typical, m
roscopically large, samples, the local ones mean the lo
ized storage of energy inside the medium for some partic
realizations of the disorder.

Some of the local resonances, namely, those with a la
quality factor, are similar to the localized modes existing
infinite systems. In fact, going further with the analogy to
periodic structure, we may think about an effective Bra
lattice, within which some small defects are introduced. T
leads to the appearance of the so-called defect~impurity!
modes@26#, with their centers distributed somehow with
the medium. In finite systems, such modes can lead, w
the concentration of the defects is sufficient for a percolat
to be achieved, to an enhanced transmission for a co
sponding resonant frequency@27,28#, i.e., in our terminol-
ogy, to some kind of untypical realizations withT;1. In the
case of ideal transparency, the scattering states within
slab show distinct features of localization, although, stric
speaking, it is senseless to talk about it because of their
pling to the propagating modes outside the slab.

Despite the rarity of such realizations, the local enhan
ments of the field may be exponentially large and their c
tribution to the mean intensity may be significant. Howev
in the lowest-order approximation, when the mixing of d
ferent spectral components is absent, the elimination of lo
resonances may be reduced to a filtering in theK space. In
fact, in this approximation the spectral content of these t
phenomena is different: whereas the global resonances
related, as we have seen, to the frequencies within the li
ing sphere of the Ewald construction, the local resonan
are defined by spectral components lying outside this sph
since only these harmonics could provide for spatially loc
ized, narrow resonant spikes of the wave pattern. Con
quently, our main assumption here is that in the lowest-or
approximation we can extract the global resonances, lea
to a dynamical localization, from the complete spectral ‘‘po
trait’’ characterizing the stochastic localization of wave in
disordered system.
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IV. CALCULATION TECHNIQUE

To study the resonances and localization in a multidim
sional~m-dimensional! system, we should evaluate the me
intensity of the wave at a pointR due to a point source
located atR0 ,

^I ~L,k!&5^G~RuR0!G* ~RuR0!&, ~4.1!

whereL5uR2R0u, and the wave vectork is directed along
the line connecting the source with the observation po
Obviously, in statistically isotropic media the mean intens
depends only on the distanceL, and, in the case of a homo
geneous medium the intensity in the far fieldkL@1 decays
as I 0(L);L12m. In a random medium, any deviation from
this asymptotic behavior should reflect the coherent effe
and serve as an indication to the wave localization, at leas
the statistical sense.

The usual approach to the calculation of mean intensity
random media is based on the Bethe-Salpeter equation
the coherence function, which can be solved only pertur
tively @29#. The first-order ~ladder! approximation corre-
sponds to a partial summation of the complete perturba
series, which retains terms of any order. However, the coh
ence function obtained in this approximation takes into
count an essentially restricted class of scattering diagra
specifically, those describing only single scattering of t
wave by a given scatterer. When also the inhomogene
waves are excluded, the ladder approximation for the coh
ence function reduces the problem to a phenomenolog
equation of radiative transfer in which the coherent effe
are neglected@29#. At the same time just the coherence a
constructive interference between multiply scattered wa
gives rise to enhanced backscattering and strong localiza
To account for these effects, it was proposed to include a
into consideration, the maximally crossed~cyclic! diagrams,
which correspond to the motion of the wave along the tim
reversed paths with respect to the paths determined by
ladder diagrams. In fact, as was shown, the maxima
crossed diagrams allow one to describe the enhanced b
scattering, in particular, to obtain the enhancement fac
;2, that coincides exactly with known experimental resu
obtained in the weak scattering regime@4#. However, for
stronger scattering, when the mean-free-path reduces to
order of wavelength~a possible threshold of localization!,
the enhancement factor decreases essentially@30#. This
means that all other diagrams come into play. In particu
the effect of recurrent paths, which describe multiple scat
ing on the same inhomogeneities, can be crucial. As a re
restricting ourselves to the ladder and maximally cros
diagrams only, we cannot describe correctly the phenome
of strong localization.

Here we use an alternative approach, starting the ana
of the wave localization in multidimensional systems w
the reduced Helmholtz equation for the Green’s funct
G(RuR0). Next, we apply the embedding procedure orig
nally proposed by Fock for the integration of quantum m
chanical equations. The idea of the method is based on
introduction of an additional pseudotime variablet and the
transfer to a higher-dimensional space, in which the pro
gation process is described by a parabolic equation simila
the nonstationary Schrodinger equation in quantum mech
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ics @21#. The serious advantage of this approach is tha
allows us to describe the recurrent events, dealing with
equation which satisfies the dynamic causality condition a
therefore, may be presented in a path-integral form.

We then use this representation for the asymptotic ev
ation of the mean intensity in the case of weak disorder. T
weakness of the disorder means here that the range o
rameters which we are interested in is described by inter
diate asymptotics

l,l «!L!l t , ~4.2!

where l « is the correlation radius of the disorder, andl t is
the conventionally defined mean-free path. Surprising
even in this approximation, the technique still does retain
main feature of the embedding procedure, which is capa
of describing the recurrent events. In fact, this will allow
to go beyond the ladder approximation, and to obtain
correction term which is related to the phenomenon of str
localization@31#.

The calculations of the mean intensity are reduced the
the self-consistent two-step perturbative procedure as
lows. At the first step, the mean intensity is approximated
a double path integral of the functional@32#

expFk2

8 E
0

L

dt1E
0

L

dt2F„t1 ,t2 ;R1~ t !,R2~ t !…G , ~4.3!

where the scattering functionF(•) is given by

F„t1 ,t2 ;R1~ t !,R2~ t !…52(
j 51

2

B«@Rj~ t1!2Rj~ t2!#

12B«@R1~ t1!2R2~ t2!#, ~4.4!

and the vectorRj (t) denotes a ‘‘causal’’ trajectory in the
(R,t) space. At the next step, the path integral is evalua
perturbatively, which leads to a small correction to the va
of I 0(L). What is important is that the wave correction o
tained describes the~exponential! decay of the mean inten
sity in the first order of the correlation function of the sca
tering potential, and conforms, in that sense, to our ne
formulated in Sec. II.

V. STOCHASTIC LOCALIZATION

Applying a probabilistic interpretation to the path integr
and denoting the unknown wave correction byx(k), we
present the intensity of the wave in a moment,

^I ~L,k!&5I 0~L !@11x~k!1...#, ~5.1!

or cumulant,

^I ~L,k!&5I 0~L !exp@x~k!1...#, ~5.2!

form, respectively. Then, using a formal transitionL→`,
i.e., the transfer to a plane wave expansion, we find that
wave correction is proportional linearly to the distance fro
the source and is given by

x~k!5
p

2
k3LE dmK f ~K !F«~K !. ~5.3!
it
n
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The filtering functionf (K ) in Eq. ~5.3! has the form

f ~K !52K21d~K2u2k•K /Ku!1K22q~K2u2k•K /Ku!,
~5.4!

where,d(z) is the Diracd function, andq(z) is the Heavi-
side step function. The spectral componentK satisfying the
condition 2k•K5K2 is the frequency of the Bragg reflectio
resonance, that, as was demonstrated above, should p
central role in the mode coupling between different scat
ing channels.

Since we have used a first~linear! correction in the per-
turbative expansion, there is a direct connection between
two terms in Eq.~4.4! and the corresponding ones enteri
Eq. ~5.4!. The first term in the latter equation originates fro
the one-path correlations, and, being considered separa
gives a doubled extinction coefficient, which defines the
cay of the coherent field, evaluated in the framework of
same approach. We deal, however, with the total intensity
the field, and the presence of the second term, which ar
from the two-path term in scattering function, and contr
utes to the final expression with opposite sign, is of gr
importance here. As we will see below, accounting for t
term allows one to obtain the dimensionality dependen
fitting, in general, the predictions of the scaling theory.

Although in both Eqs.~5.1! and~5.2! the wave correction
is less than unity, which is simply the condition of validity o
the result, these equations, being equivalent in this case,
a different behavior if we try to extrapolate the results to t
case of non-smallx. In fact, for negative values ofx, we
have an indication of the exponential localization, i.e.,
present the results in the form of Eq.~5.2!. If x>0, we
assume then that there is no~exponential! localization, and
the mean intensity, being presented in the form~5.1!, de-
creases far from the source more slowly than in a homo
neous medium.

For isotropic spectraF«(K), we arrive at the expression

x~k!5pk2LE
0

`

dK fm~K !F«~K !, ~5.5!

where the form of the filtering functionf m(K) depends on
the dimensionality of the problem. In one, two, and thr
dimensions this function reads, respectively,

f 1~K !52~k/K !d~K22k!1~k/K2!q~K22k!,
~5.6a!

f 2~K !52@~12K2/4k2!21/22~2k/K !arcsin~K/2k!#

3q~2k2K !1~pk/K !q~K22k!, ~5.6b!

f 3~K !52pkq~K22k!. ~5.6c!

The behavior of the filtering function is shown in Fig. 2. It
seen that in the lowest-order approximation the effect of d
order is split into two terms having opposite signs. Unli
the one- and two-dimensional cases, the negative term
absent in three dimensions.

To exemplify the results we use the simplest Gauss
correlation function

B«~R!5s«
2 exp~2R2/ l «

2!. ~5.7!
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For this function we introduce two dimensionless para
eters: the normalized wave numberk5kl« , and the normal-
ized distancel 5L/ l « . In terms of these parameters, th
wave correctionx~k! in any dimension takes the form

x~k!5s~k!ls«
2, ~5.8!

where the coefficients(k) has to be evaluated numerically
the general case. The dependence of the coefficients(k) on
the normalized wave numberk is shown in Fig. 3 by a
dashed line. The general property of the result is its cru
dependence on the dimensionality of the system.

In the one-dimensional case the wave correction is stri
negative, and it is true not only for the Gaussian model,
also for any medium with a monotonically decreasing sp
trum. Therefore, we can predict an exponential-type deca
the wave intensity inside the medium even for an ensem
of all possible realizations. In the limiting case of ad corre-
lated potential~the power spectrum is the same constant
any frequency! the wave correction is zero, which can b
easily verified by direct integration. In two dimension
along with a negative sign at higher frequencies, there

FIG. 2. Schematic representation of the filtering functionf m(K)
for 1D ~a!, 2D ~b!, and 3D~c! statistically isotropic media. It is see
that for K.2k in all cases there is a positive tail proportional
Km23. For K,2k, the behavior of the filtering function, which i
negative in general, depends essentially on the dimensionality o
problem: in the 1D case there is only one discrete componen
cated atK52k; in 2D it is a monotonically decreasing functio
with a singularity at 2k from the left; and in the 3D case the neg
tive part is completely absent for isotropic media.
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of
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low-frequency positive part of the correction. It means tha
these frequencies the decrease of the intensity due to lo
ization is slower than the increase of probability to excite
local resonance at any point of the medium. In three dim
sions, the wave correction is positive, with the maximu
observed neark;1. The positivity of the correction mean
that apart from the regular term which decays asL22, there
is an additional term which arises from the local resonan
and decays more slowly, asL21.

VI. DYNAMICAL LOCALIZATION

To extract the information about dynamical localizatio
from the data obtained, we follow the approach proposed
Sec. II. Specifically, we have to eliminate the contribution
local stochastic resonances, keeping the Bragg resona
only. In the simplest case of 1D media, the filtering functi
f 1(K) consists of two terms. One of them is discrete a
extracts the main Bragg componentsK562k. Another term
is continuous and accounts for a high-frequency tail of
spectrumF«(K). According to our idea, this is related t
local resonances excited inside the medium. To calculate
filtered version of the wave correction,x f , we keep the dis-
crete term only, which leads to

x f ~k!52
p

2
k2LF«~2k!. ~6.1!

Inasmuch as the negative sign of the correction is interpre
as a signature of exponential localization, then by using
relation between the filtered wave correctionx f and the in-
verse localization lengthj21,

j21~k!52x f ~k!/L, ~6.2!

he
o-

FIG. 3. Normalized wave corrections(k)5x(k)/ ls«
2 ~dashed

line! and its filtered versionsf (k)5x f (k)/ ls«
2 ~solid line! plotted

as functions of the normalized wave numberk5kl« for statistically
isotropic media. The behavior of the correctionx~k! reflects the
properties of the medium for a statistical ensemble of all poss
realizations. The correctionx f (k) is related to the dynamical local
ization, i.e., to the behavior of the wave in a typical realization
the scattering potential. In the three-dimensional case, the filte
wave correctionx f (k) vanishes for isotropic media.
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we arrive at nothing else than exactly Eq.~3.1!, obtained
within the framework of the perturbative self-averaging p
cedure.

Our idea, stimulated by the above consideration, is to
tract only the spectral components lying within the limitin
sphere, from the wave correction given by the expans
~5.3! in 2D and 3D systems. The result for the filtered ve
sion of the correction has the form

x f ~k!5
p

2
k3LE dmKq~2k2K ! f ~K !F«~K !. ~6.3!

We see that in many-dimensional systems, where an infi
number of coupled channels exists, the result is determ
by competition of two effects. The first one, which is relat
to the first term of the filtering function~5.4! appearing with
a minus sign, tends to localize the wave. For any given v
tor k we integrate the power spectrum over the two Ew
spheres, with the weighting factorK21. The second effect
related to~the part of! the second term of the filtering func
tion, which has an opposite sign, is to suppress or destroy
localization. To account for this contribution, we integra
over the area within the limiting sphere, but outside t
Ewald spheres of reflection, with the weightK22. When the
direction ofK coincides with the direction that is backwa
to a given wave vectork, then the contribution of the delo
calizing term vanishes. The farther the direction ofK from
the backward one and the closer it is to the initial propa
tion directionk, the greater the contribution of the deloca
izing term to the filtered wave correction. This picture co
relates very well with the qualitative consideration~Sec. II!
of the relative role of the coupling between different cha
nels in the Ewald construction.

For a given spectrumF«(K ) the final result depend
somehow on both the modulus and direction ofk. Here we
will concentrate on the analysis of wave localization in stru
tureless isotropic media, when the scattering is indepen
of the direction. In 2D isotropic media, similar to the 1
case, the filtered correction is always negative~see Fig. 3,
solid lines!, and the wave is exponentially localized, with th
localization lengthj~k! shown in Fig. 4 as a function of th
wave number. Although a well-defined minimal value ofj at
some intermediate frequency band is observed, in the h
frequency limit the localization length is unexpectedly co
stant, independent of the wave numberk. This result contra-
dicts a common belief that the high frequency behavior
the wave, being governed by the geometrical optics ru
exhibits only extending states. The argument, however, is
convincing by itself, because even high-frequency mec
nisms, such as whispering-gallery resonances, comb
with a constructive interference, may confine the wa
within a finite domain, the effect that is reminiscent of t
corresponding type high-Q resonances in circularly symme
ric disks. Besides, unlike electronic systems, where at
energies the electron is always trapped in the wells of dis
dered potential, for classical waves the high-frequency li
corresponds to the increase of the scattering strength o
potential. On the other hand, we have to remember tha
the results obtained in this paper are limited by the lowe
order approximation. The increase of the wave number le
clearly to a decrease of the mean-free-pathl t , and the in-
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termediate asymptotics~4.2! can quickly fail to be valid.
Nevertheless, the same effect has been observed recen
numerical simulations@33#, where the localization length fo
2D strongly disordered systems was shown to saturat
relatively high frequencies.

In three dimensions, for isotropic systemsx f (k)[0, i.e.,
despite the existence of local resonances, enhancing the
at some random points and thus accumulating the ene
inside the medium, the wave cannot be localized in
Anderson sense. Irrespective of the true existence of the
bility edge in 3D systems with classical waves, when t
strength of the disorder is energy dependent, our appro
which is based essentially on a perturbative procedure, c
not describe such a transition, and other techniques hav
be utilized. Nevertheless, the vanishing ofx f in three dimen-
sions correlates very well with the current situation, where
to the best of our knowledge, the exponential localization
not been observed until recently in 3Dstructurelesssystems,
notwithstanding several claims of being very close to achi
ing it in such media.

VII. SUMMARY

In this work we have studied the localization phenomen
in the scalar wave approximation. By using the notions
ensemble and self-averaging, we could distinguish betw
the properties of stochastic and dynamic behavior. Comb
ing then the perturbative path-integral technique with
idea of spectral filtering, we have analyzed the transp
properties of a random system in the localization regim
The results obtained are limited, obviously, by the lowe
order approximation, i.e., by the weak disorder limit. How
ever, even the short consideration of a self-avoiding-w
analogy given in Ref.@22#, shows that the limitations of the
perturbative procedure, which has been utilized, may be
sentially different in various dimensions. In fact, when w
transfer, in turn, from one to three spatial dimensions, th
is more and more phase space available for the trajector
avoid the intersection points, which contribute to the pa
integral, and the same perturbative result may account f
stronger disorder in higher dimensions. Therefore, the li

FIG. 4. Localization lengthj~k! plotted as a function of the
normalized wave numberk5kl« for 1D and 2D statistically isotro-
pic media. The localization length is normalized tos«

2 and is given
in units of l « .
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tations that are very strict in 1D, may be weaker in 2D, a
perhaps, not so serious in the three-dimensional case.

Although the purpose of the present work was to stu
random media~scattering potentials with correlations d
creasing at infinity!, there is a naturally arising question o
whether the results obtained could be related in any wa
periodic or near-periodic structures~photonic crystals! exhib-
iting band gaps in their spectra. In periodic media the va
of F«(K ) has obviously the meaning of a static structu
factor that can be easily calculated for any composite m
rial, and then the value ofx f (k) can also be evaluated for
given k according to Eq.~6.3!. Could one maintain that the
wave would be localized if

x f ~k!,0 ~7.1!

for all directions k/k ~if it is possible in principle!!, and
could one consider this condition as a criterion of stro
localization in such media? Irrespective of the exact ans
to this question, it is clear that in any case, the form of E
~6.3! seems to remove the problem of the Mie-Bragg cont
versy in creation of gaps, by reducing it to a terminologic
difference only. In fact, when one speaks aboutBragg scat-
tering in periodic structures, one means usually that the s
tial period of the structure~lattice constant! matches, in an
appropriate way, the wavelength in the host material. In
case of theMie resonancesone implies that along with a
high value of the dielectric contrast, the diameter of inc
sion ~say, of spherical form! fits the wavelength inside th
ish
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inclusion. It is clear, at the same time, that only the com
nation of all these parameters~to which we can add the vol
ume filling factor, which is not independent, however!, form,
on an equal footing, the static structure factor, which, in
turn, is likely to define the localizing properties of the m
dium. The same conclusion may be related also to the c
nectivity of inclusions and the symmetry of the resultin
structure, the questions that have been explored intensi
in many recent works by using a ‘‘cut-and-try’’ approac
either by computer simulations, or in real experimen
@17,19#.

If criterion ~7.1! is actually relevant to a search for loca
ization in periodic structures, some other questions ar
Could we predict the kinds of structures, and estimate
optimum values of their parameters, that are most favora
for the appearance of large absolute band gaps? What ar
limitations of the results in various dimensions? etc. A
though the work poses more questions rather than giv
definite answers to them, we hope that both the appro
itself and the final results offer a physical insight into t
problem of wave localization, and may stimulate further
search in this direction.
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